OM30PS

USB+PS/2 MCU+Sensor 2-in-1 Optical Mouse IC

Product Specification

Doc. Version 1.1

ELAN MICROELECTRONICS CORP.

September 2009

1 General Description

The OM30PS IC is integrated with a USB+PS/2 Micro-controller Unit (MCU) for computer optical mouse utilization. It is housed in a unique 16 pins staggered dual in-line DIP like package for 3D3K application, or designated as "OMD16." The chip has a resolution of 800 dots per inch (DPI) and catches the surfaces images at 3200 times per second. Its tracking speed is up to 20 inches per second (IPS).

2 Features

- Optical sensor and USB+PS/2 MCU are integrated into a single chip
- Comply with USB version 1.1 protocol
- Up to 20 IPS high speed motion detection
- Frame rate is up to 3200 frames per second
- 5 volt power supply
- Built-in 3.3V and 1.8V voltage regulators
- 16-pin staggered DIP
- Supports USB+PS/2 or USB only by pin option (refer to Section 9, Application Circuit).
- Supports 3D3K and Z/2 mouse scrolling
- Three operating modes, Active, Standby, and Power Down modes
- Automatic Standby mode (takes effect after no motion elapses for more than 1 second)
- Enters power down mode when USB device goes to suspend mode
- Conform with Green Products protocol

NOTE

These are all Green Products which do not contain hazardous substances

3 Pin Configuration (Package)

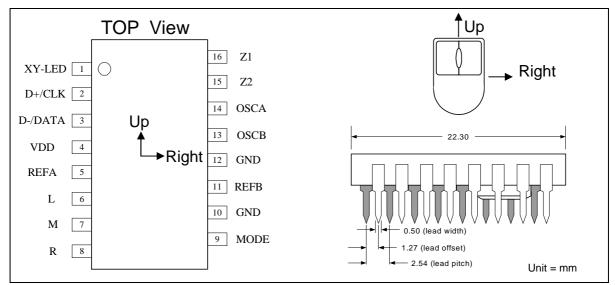


Figure 3-1a OM30PS Pin Configuration (Top View)

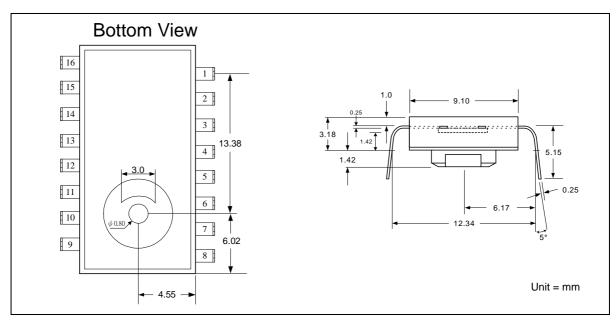


Figure 3-1b OM30PS Pin Configuration (Bottom View)

NOTE

- Dimension in millimeter.
- Dimension tolerance is +/- 0.1 mm.
- Coplanarity of leads is 0.1 mm.
- Lead pitch tolerance is +/- 0.15 mm.
- Cumulative pitch tolerance is +/- 0.15 mm.
- Angular tolerance is +/- 3°.
- Maximum flash is +0.2 mm.
- Chamfer (25° X 2) on the taper side of the lead.

4 Functional Block Diagram

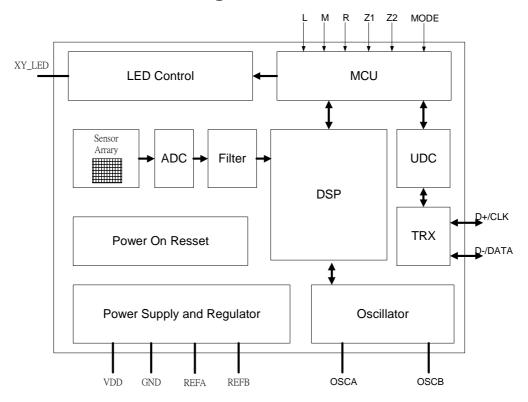


Figure 4-1 OM30PS Functional Block Diagram

5 Pin Descriptions

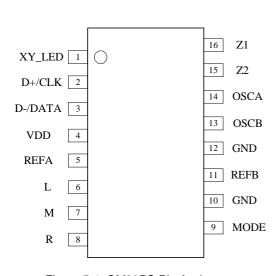


Figure 5-1 OM30PS Pin Assignments

Pin No.	Symbol	I/O	Description	
1	XY_LED	0	LED control	
2	D+/CLK	I/O	USB D+ or PS/2 CLK	
3	D-/DATA	I/O	USB D- or PS/2 DATA	
4	VDD	-	5 V DC power supply	
5	REFA	-	3.3V Reference	
6	L	I	Left key	
7	М	I	Middle key	
8	R	I	Right key	
9	MODE	-	U+P or U Only	
10	GND	-	Ground	
11	REFB	-	1.8V Reference	
12	GND	-	Ground	
13	OSCB	-	Ossillator	
14	OSCA	-	Oscillator	
15	Z2	I	Carollar	
16	Z1	I	Scroller	

6 Absolute Maximum Rating

Parameter	Symbol	Min.	Max	Unit	Notes	
Storage Temperature Range	Tstr	-40	85	C	-	
Operating Temperature Range	Totr	-15	40	C	-	
Lead Solder Temperature		-	245	Ĉ	For 10 seconds, 1.6mm below seating plane	
Supply Voltage	VDD	-0.5	5.5	V	-	
Input Voltage	Vin	-0.5	5.5	V	Pin1, Pin2, Pin3	
input voltage		-0.5	3.6	V	All GPIO pins except Pin1, Pin2, Pin3	
ESD	ESD		2	KV	All pins, human body model	
Distance from Lens Reference Plane to Surface Plane	D	2.2	2.4	mm	This distance actually depends on the lens. 2.2 to 2.4 mm is just the most popular design range. Verify and confirm with your lens supplier for the best distance.	

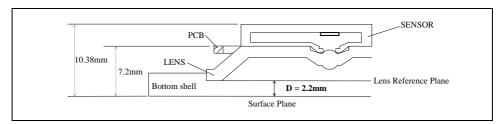


Figure 6-1 Distance from Lens Reference Plane to Surface Plane

7 DC Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max	Unit	Notes
Supply Voltage		VDD	4.0	5.0	5.5	V	
DC Reference A		VrefA	3.0	3.3	3.6	V	
DC Refere	ence B	VrefB	1.6	1.8	2.0	V	
Input Low Voltage		V_{IL}	-	-	0.8	V	
Input High Voltage		V _{IH}	2.0	-	-	V	
Output Low Voltage		V _{OL}	-	0	0.5	V	
Output High Voltage		V _{OH}	2.8	3.3	3.6	V	
Output Low Current		I _{OL}		10		mA	
Output High Current		Іон	-	-10	-	mA	
Resolution		Res	-	800	-	DPI	
Speed		S	-	20	-	in/sec	
Clock Frequency		FCLK	-	24	-	MHz	
Resonator		Res	-	6	-	MHz	
Sensor Frame Rate		fframe	-	3000	3200	frames/sec	
LED Current (Average)		I_LED	2.0	-	17	mA	P_Bin LED R_LED=51 Ω
DC	Mouse Active	IDDACT	-	5.5	-	mA	No load on GPIO. Excluding LED current.
Supply	Standby	IDDSTB	-	3		mA	
Current	Power Down	IDDPD	-	340	-	uA	Excidently LED current.

8 Application Circuit

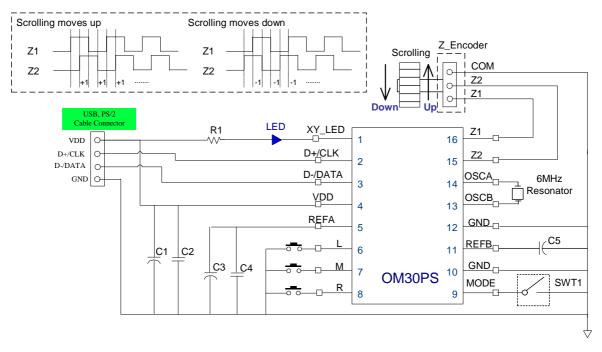


Figure 8-1 MODE-I for Basic Circuit

Where: *R1*: 33 ~51 Ohm, *C1*: 10uF, *C2*: 0.1uF, *C3*: 10uF, *C4*: 0.1uF, *C5*: 4.7uF, *SWT1*: Open for USB+PS/2, short for USB only (one time detection after power on).

NOTE

- 1. For the P bin LED (3600- 4700mcd), the LED maximum average current (when working on black surfaces) of LED is about 17mA and the LED minimum average current (when working on white surfaces) is 2mA with R1=51 Ohm.
- 2. If the LED illumination is less than P bin, then R1=33 Ohm is recommended. It will allow the LED maximum average current to reach 25mA.
- 3. The cable connector is better located at the left side of the sensor to shorten the track length of D+ and D-.
- 4. C1, C2, C3, C4, C5 and 6MHz Resonator must be as close to sensor as possible.
- 5. A Large and complete ground is better than several small and separated grounds. If necessary, to add 0 or 1 ohm resistor jumps to make ground as large (or completed) as possible.

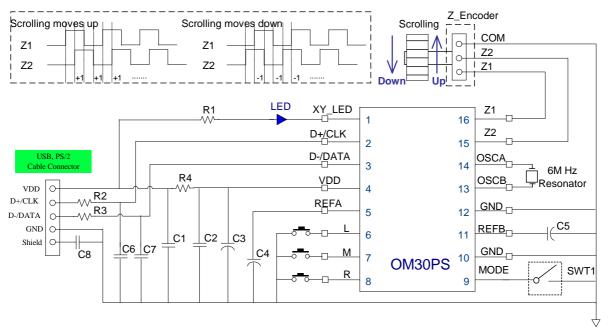


Figure 8-2 MODE-I I for Better EMC performance.

Where: R1: 33 ~51 Ohm, R2: 33 Ohm, R3: 33 Ohm, R4: 10 Ohm,

C1: 0.1uF, C2: 0.1uF, C3: 10uF, C4: 10uF, C5: 4.7uF, C6: 150pF, C7: 150pF, C8: 10nF(103)

SWT1: Open for USB+PS/2, short for USB only (one time detection after power on).

NOTE

- 1. For the P bin LED (3600- 4700mcd), the LED maximum average current (when working on black surfaces) of LED is about 17mA and the LED minimum average current (when working on white surfaces) is 2mA with R1=51 Ohm.
- 2. If the LED illumination is less than P bin, then R1=33 Ohm is recommended. It will allow the LED maximum average current to reach 25mA.
- 3. The cable connector is better located at the left side of the sensor to shorten the track lengths of D+ and D-.
- 4. R2, R3, R4, C1, C2, C6, C7 and C8 must be as close to the cable connector as possible.
- 5. R2 should be placed near C6 to form a R-C low pass filter to reduce EMI noises and the same with R3 and C7.
- 6. R4 should be placed between C1 and C2, besides, C1, C2 and R4 must be very close to each other to form a π -type filter to reduce EFT noises.
- 7. C3, C4, C5 and 6MHz Resonator must be as close to the sensor as possible.
- 8. A Large and complete ground is better than several small and separated grounds. If necessary, add 0 ohm resistor jumps on the quiet I/O pins (L, M, R, Z1, and Z2) to make the ground as large (or completed) as possible.
- 9. Must choose the cable which is with the shield.

9 PCB Through-Holes (Vias) Layout

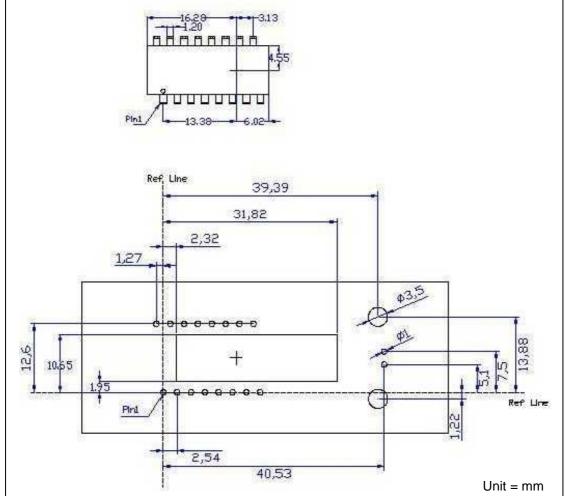


Figure 10-1 PCB Vias Layout for OM30PS

10 Package Type

MCU+Sensor 2-in-1 Optical Mouse IC	Package Type	Pin Count
OM30PS	OMD16	16 pins

Where: "P" stands for "OMD16" package type

"S" stands for compliance with Sony SS-00259 standard